Урожаи и посевы - Страница 25


К оглавлению

25

Впрочем, это эйнштейновское видение физической Вселенной, в свою очередь, пошатнулось под наплывом событий. «У совокупности физических явлений», которые нужно было принять в расчет, было довольно времени с начала этого столетия, чтобы расширить свой список! Появилось множество физических теорий, каждая из которых более или менее успешно объясняла ограниченный набор фактов из невероятного нагромождения «наблюдаемых явлений». И все ждали дерзкого мальчишку, который нашел бы, играя, новый ключ (если он один…), горячо предвкушаемую модель, которая «сработала» бы и объяснила бы все разом…

1) Требуется размышление «философской» природы над самим понятием «математической модели» и тем, как оно соотносится с действительностью. Начиная с успеха ньютоновской теории, среди физиков стало аксиомой по умолчанию, что существует математическая модель (даже единственно правильная модель) для абсолютно адекватного, без сучка и задоринки, выражения физической реальности. Это соглашение, более двух столетий задававшее у нас тон, представляет собою нечто вроде окаменелых останков некогда живого видения Пифагора: «Все есть число». Может статься, это новый «невидимый круг», пришедший на смену древним метафизическим кругам, чтобы ограничить Вселенную физика (в то время как раса «естественных философов» определенно представляется вымершей: их с легкостью вытеснили компьютеры…). Стоит лишь мгновение над этим поразмыслить, как становится ясно, что законность этого соглашения далеко не бесспорна. Есть даже весьма серьезные философские причины тому, чтобы априори ставить ее под сомнение, или, по крайней мере, предусматривать строжайшие границы применимости соглашения. Поняв это, остается — теперь, или никогда — подвергнуть эту аксиому тщательной критике, даже может быть, «доказать», вне всякого сомнения, что она не имеет под собой основания: что не существует неопровержимой математической модели, которая объясняла бы совокупность так называемых физических явлений, составляющих сегодняшний список.

Если определить удовлетворительным образом само понятие «математической модели» и «законности» ее (в пределах ошибки, допустимых для данных измерений), вопрос «теории великого объединения», или по крайней мере «оптимальной модели» (в смысле, подлежащем уточнению) окажется, наконец, ясно поставленным. В то же время мы, бесспорно, получим более точное представление о степени произвола, сопровождающего (с необходимостью, быть может) выбор таковой модели.

2) Лишь после такого размышления, мне кажется, «техническая» проблема отыскать точную модель, более удовлетворительную, чем те, что ей предшествовали, приобретает свой полный смысл. И одновременно, быть может, наступает пора извлечь на свет вторую аксиому, по умолчанию принятую среди физиков со времен античности, глубоко укоренившуюся в самом способе нашего восприятия пространства: аксиому, утверждающую непрерывность природы пространства и времени (или пространства-времени), «места», где происходят события, которые изучает физика.

Сравнение между моим вкладом в современную мне математику и вкладом Эйнштейна в физику мне приходит на ум по двум причинам: во-первых, и тот и другой труд состоялся за счет перерождения нашего представления о пространстве (в одном случае — в математическом смысле, и в физическом — во втором); во-вторых, оба они приняли форму объединяющего видения, охватившего обширное множество явлений и ситуаций, которые раньше воспринимались совершенно отдельно друг от друга. Мне видится явственно родство по духу между его трудом и моим.

Это родство, на мой взгляд, ничуть не противоречит очевидному различию в существе задач той или иной работы. Как мы уже недавно увидели, перемены, введенные Эйнштейном, касаются понятия физического пространства, так что он черпал из арсенала уже известных математических понятий, ни разу не испытав нужды в том, чтобы его расширить или хотя бы переворошить в поисках чего-либо особенно глубоко запрятанного. Его вклад заключался в том, что он нашел среди математических структур, известных к тому времени, те, что были наиболее приспособлены служить как «модели» для мира физических явлений. Его модель пришла на смену предыдущей, бывшей уже при смерти, когда-то завещанной его предшественниками. В этом смысле его труд был вот именно трудом физика и, сверх того, трудом естественного философа, как понимали задачи последнего Ньютон и его современники. Это «философское» измерение отсутствует в моем математическом труде. Мне никогда не приходило в голову задаться вопросом о возможных связях между воображаемыми, «идеальными» концептуальными конструкциями, осуществимыми во Вселенной математических объектов, и явлениями физического мира (и даже событиями из мира духовного). Мой труд был трудом математика, намеренно обходящего стороной вопрос «приложений» (в других науках) или «мотивации» и внутренних, душевных корней того, что побуждало меня к работе. Математика, к тому же, влекомого духом, прежде всего прочего, к неустанному расширению арсенала основных для своего искусства понятий. Так-то мне и привелось, совершенно не осознавая того и как бы играючи, поставить с ног на голову самое что ни на есть основополагающее понятие геометрии: понятие пространства (и «многообразия»), то есть наше представление о самом месте, где живут геометрические существа. Новое понятие «пространства» (что-то вроде «обобщенного пространства», но только точки, которые должны как будто бы его образовывать, более или менее из него исчезли), ничем не напоминает, по сути, понятие, которое Эйнштейн внес в физику (отнюдь не обескураживающее для математика). Здесь, напротив, напрашивается сравнение с квантовой механикой, открытой Шредингером. В этой новой механике традиционная «материальная точка» исчезает, уступив место чему-то вроде «вероятностного облака», более или менее плотного в той или иной области пространства, в зависимости от «вероятности», с которой точка находится в этой области. В этом новом подходе явственно ощущается «мутация» нашего способа восприятия явлений в механике, еще более глубокая, чем та, что приведена в действие моделью Эйнштейна — мутация, которая не ограничивается простой заменой математической модели, немного узкой в плечах, другой похожей, но большего размера или лучше скроенной. На этот раз новая модель так мало напоминает старые добрые традиционные модели, что даже математик, будь он при этом большим специалистом в области механики, перед ней вдруг чувствует себя в недоумении, даже в растерянности (или в бешенстве…). Переход от механики Ньютона к эйнштейновской должен ощущаться математиком примерно так же, как переход от давнего, трогательного провинциального диалекта к парижскому жаргону последней моды. Напротив, перейти к квантовой механике — все равно что заменить французский китайским.

25