(14). Если так, отчего же я сам несколькими строками раньше писал, что в группе не было руководителя? В действительности никакого противоречия здесь нет. Для старых Бурбаков Вейль был как бы душою группы — отнюдь не «начальником». Когда он появлялся на наших сборищах, то иногда — по настроению — брал на себя роль «ведущего» (как я уже писал). Но правила игры выбирал не он, они были одни для всех. Когда он приходил в дурном расположении духа, он мог остановить дискуссию, если его не устраивала тема. Тогда обсуждение спокойно возобновлялось на другой же день, в отсутствие Вейля или даже с его участием (если он больше не протестовал). То или иное решение в группе принималось лишь в том случае, если все были «за». Иногда (и даже нередко) «против» оказывался только один человек, и этого хватало. Я знаю, это звучит нелепо: кажется, по такому принципу группа работать не может. Хотите — верьте, хотите — нет, но Бурбаки работали превосходно!
(15). Эта «аллергия» на стиль Бурбаки, мне кажется, не препятствовала личному общению. Члены группы, а также «сочувствующие», легко находили общий язык с представителями «противоположного лагеря». Это было бы не так, если бы Бурбаки держались особняком, как закрытая секта, элита в элите. Независимо от своего подхода к математической работе, каждый из членов группы живо ощущал математические реалии и знал об их природе не понаслышке. Так было вначале; но помнится, уже в шестидесятые годы один из моих друзей завел привычку называть «занудами» коллег, которые, по его мнению, занимались неинтересной работой. Речь шла о вещах, в которых я тогда почти совсем не разбирался, свои нелестные оценки мой друг раздавал направо и налево с завидной самоуверенностью, — словом, я попался на удочку и долгое время принимал его суждения за чистую монету. Так было, пока один такой «зануда» — уж не знаю, чем он не угодил моему блистательному приятелю — не поразил меня оригинальностью и глубиной мысли. Кажется, чего проще: если ты не знаком с работой или не слишком хорошо разбираешься в теме, будь скромнее, воздержись от поспешных суждений. У меня есть чувство, что перемены в нашей среде начались с того, что некоторые члены группы Бурбаки стали слишком охотно пренебрегать этим правилом. При этом у них еще сохранялся «математический инстинкт»: умение распознать серьезный, содержательный, богатый находками труд без ссылки на научную репутацию или известность автора. Но похоже, что с потерей профессиональной скромности такой инстинкт изнашивается намного быстрее: в наши дни он уже сделался редкостью в математических кругах. Я сужу об этом по многочисленным откликам, доносящимся ко мне с разных сторон.
(16). Правда, несколько таких отдельных «маленьких микрокосмов» все же существовало (и некоторые из них, пожалуй, нельзя было назвать «маленькими»). Иногда они жили своей жизнью, в стороне от мира Бурбаки. Однако, скажем, вокруг меня нечто подобное возникло лишь после того, как я вышел из состава группы и смог, наконец, заняться тем, что меня особенно увлекало.
(17). Теплые отклики, как и действенная помощь, приходили ко мне в основном от людей, не имевших отношения к научной среде. Наряду с Алэном Ласку и Роже Годеманом, меня в то время очень поддержал Жан Дьедонне. Жан приехал на заседание суда в Монпелье, где горячо свидетельствовал в мою защиту. Впрочем, как я уже говорил, мое дело было заранее обречено на провал.
(18). Думаю, что я ошибся тогда вовсе не по небрежности. Просто я еще многого не знал: мне не хватало зрелости. Только десятью годами позже я начал задумываться о природе психологического барьера, о том, какие внутренние механизмы его вызывают. Тогда же я стал обращать внимание на действие этих механизмов: в себе самом, в своих близких и учениках. Я понял, что они играют важную роль во всей нашей жизни, не только в учебе или работе. Конечно, мне жаль, что в случае с теми двумя молодыми людьми мне не хватило прозорливости. Все же я не раскаиваюсь в том, что ясно высказал им свое, пусть не слишком обоснованное, впечатление от нашей совместной работы. Если ты думаешь, что человек несерьезно относится к своей работе, ты должен прямо сказать ему об этом — мне кажется, это правильно и даже необходимо. Конечно, я мог поспешить с выводами, и все же за последствия отвечаю не я один. После такого нагоняя у ученика остается выбор: извлечь из этого урок (первый из них, по-видимому, так и поступил) или сдаться, опустить руки. Даже если он решит оставить математику, он всегда может попробовать свои силы в другом ремесле — а ведь это вовсе не так уж плохо!
(19). После 1970 г. еще один молодой человек, Ив Ладегейри, подготовил и защитил диссертацию под моим руководством. Мои ученики первого периода — это П. Бертло, М. Демазюр, Ж. Жиро, госпожа Хаким, госпожа Хоань Суан Син, Л.Иллюзи, П. Жуанолу, М.Рэйно, госпожа Рэйно, И. Сааведра, Ж.Л.Вердье. (Шестеро из них, впрочем, закончили работу над диссертацией после 1970 г. — то есть в ту пору, когда я уже не так много времени уделял математике.) Мишелю Рэйно принадлежит здесь особое место. Он сам наметил основные вопросы и существенные понятия для своей диссертации, над которой и в дальнейшем работал совершенно самостоятельно. Моя роль как «научного руководителя», таким образом, сводилась к тому, чтобы прочесть готовую диссертацию, созвать ученый совет и ввести в курс дела его участников.
Если же я сам предлагал человеку тему для диссертации, я всегда старался продумать ее заранее — с тем, чтобы, если понадобится, помочь ученику в его работе. Примечательным исключением из этого правила была работа мадам Мишель Рэйно о локальных и глобальных теоремах Лефшеца для фундаментальной группы, сформулированных в терминах 1-стэков над соответствующими этальными ситусами. Этот вопрос я считал сложным (и не ошибся). У меня к тому моменту не было идей доказательства (хотя в самих утверждениях я нисколько не сомневался). Эта работа продолжалась до начала 70-х годов, и мадам Рэйно (как и ее муж несколькими годами раньше) без какой-либо помощи придумала тонкий и оригинальный метод доказательства. Эта превосходная работа открывает, между прочим, вопрос о возможном расширении результатов мадам Рэйно на случай n-стэков. На мой взгляд, это было бы естественным завершением (в контексте схем) теорем типа «слабой теоремы Лефшеца». Формулировка соответствующей гипотезы (справедливость которой также не вызывает сомнений), однако, существенным образом использует понятие n-стэка. Изучению этого понятия и будет, в основном, посвящена эта книга, о чем ясно свидетельствует ее название — «В погоне за стэками». В свое время мы, без сомнения, к этому вернемся.