Урожаи и посевы - Страница 87


К оглавлению

87

Ведь, как я уже говорил однажды, ей одной ничего не стоит заполнить всю мою жизнь. Но целой жизни не хватит, чтобы исчерпать ее до конца!

50. Груз прошлого

50. Вот уже несколько дней, как я практически закончил работу над «РС», внимательно перечитал записки, нанес последние штрихи. Целый месяц я каждое утро просыпался с мыслью о том, что книга вот-вот завершится, что еще день-два, и можно будет вздохнуть с облегчением. Зато теперь, когда пора и в самом деле пришла, меня терзают сомнения — довел ли я свой труд до конца? Ведь, по правде говоря, на один вопрос я так и не нашел ответа. Я хотел понять, какие конкретно события или обстоятельства заставили хозяина так резко переменить ставки: предпочесть математику медитации, не побоявшись пойти наперекор довольно значительным силам внутренней инерции. В последнее время мои мысли сами собою настойчиво возвращаются к этому вопросу, несмотря на то, что в эти дни я уже как будто переключился на размышления иного порядка (например, о конформной геометрии). Пока волна медитации еще не унеслась от меня, подбросим ей последние обрывки сомнений, чтобы уж вычистить все до конца.

Когда я пытаюсь «наугад» представить себе, что за события могли натолкнуть меня на мысль о том, чтобы снова взяться за математику (всерьез, в расчете провести за работой по крайней мере несколько лет), мне приходят в голову несколько возможных ответов. Первый из них, и наиболее убедительный — хроническая неудовлетворенность, не оставляющая меня вот уже шесть или семь лет в моей работе с учениками. С этим же у меня связано ощущение неполной занятости, которое с годами становилось все острее. Иногда мне казалось, что я понапрасну стараюсь передать лучшее, что во мне есть, моим угрюмым ученикам: то, что им предложено, они берут безо всякого интереса (и никогда не просят добавки).

Повсюду, куда ни посмотри, я видел великолепные задачи, которые, кажется, сами просились в руки. Иногда для того, чтобы к ним подступиться, хватило бы смехотворно малого запаса знаний: они сами готовы были подсказать тебе и слова языка, на котором нужно о них говорить, и названия инструментов, чтобы их обрабатывать. Не видеть всего этого было бы невозможно просто потому, что, преподавая в университете, я сохранял какую-то связь с миром математики (пусть и на самом скромном уровне), даже в те времена, когда меня это менее всего занимало. Красивые вещи в математике всегда прячутся друг за другом: поднимешь с земли одну — откроется другая, а под ней, в глубине, целая россыпь сокровищ… Да и не в одной математике: куда бы ты ни взглянул с настоящим, живым любопытством, тебе откроются недра, полные тайн, и ты почувствуешь, что их богатства неисчерпаемы. Но мне не удавалось передать это чувство ученикам — потому-то я и оставался неудовлетворенным своей работой. Я не мог зажечь в них ни малейшей искры желания взять в руки хотя бы то, что лежало прямо перед глазами. А ведь они так или иначе решили провести месяцы, а то и годы (столько, сколько понадобится, чтобы подготовить необходимый диплом) в «научной работе» — так почему же не предаться ей от души, с увлечением? Между тем, если не считать двоих-троих, никому из моих учеников за последние десять лет это и в голову не приходило. Месяцами, даже годами, они топтались на месте, опустив руки, или мучительно пробивались вперед, как крот в твердой земле, прямой дорогой к диплому, не понимая толком, что они видят перед собой и никогда не оглядываясь по сторонам. Все это симптомы творческого паралича, сказать о котором вообще можно немало. Эта болезнь не имеет ничего общего с «одаренностью», «способностями» или отсутствием таковых. Это — психологический барьер, и я уже однажды говорил о его причинах. Тогда, в начале вводной главы, я коснулся этой темы лишь мимоходом; здесь есть о чем подумать, но сейчас передо мной стоит иная задача. Итак, отвечая на свой вопрос, я должен констатировать у себя состояние хронической неудовлетворенности, вызванное тем, что за последние семь лет в моей работе с учениками одна и та же история повторялась снова и снова, и выхода из этой ситуации я не видел.

Выход, однако, был, и достаточно очевидный — если не для преподавателя, то по крайней мере для математика. Отчаявшись увлечь своих учеников математическими тайнами, я мог выполнить своими руками хотя бы часть той работы, которую они не желали довести до конца. Время от времени я так и делал: урывками, по несколько часов или даже дней, обдумывал разные вещи, пришедшие мне в голову в ходе работы с учениками. А порой у меня наступали периоды настоящего математического голода (приходившие внезапными, мощными волнами, как будто что-то и впрямь во мне взрывалось…): тогда я неделями, а бывало, и месяцами, размышлял только о математике. Но занимаясь математикой регулярно, от случая к случаю, я мог лишь в общих чертах описать ту или иную проблему, и мое представление о ней оставалось весьма неполным. Точнее, я ясно видел, что нужно сделать, но самый труд был еще впереди. Чтобы лучше разобраться в ситуации, необходимо было взяться за работу всерьез. Два месяца назад я написал краткий обзор основных тем, понемногу захватывавших мое воображение. Получился «Набросок Программы», о котором я уже как-то упоминал. Наряду с этими записками он составит первый том «Размышлений о математике».

Достаточно ясно, что эти короткие разведки математической местности (которые я проводил, что называется, «в частном порядке») сами по себе моей застарелой неудовлетворенности разрешить не могли. Ощущение «неполной занятости», несомненно, шло от желания действовать (вероятно, честолюбивого: чувствуется почерк «хозяина»). Во мне говорил уже не столько преподаватель (который стремился бы «расшевелить» учеников, что-то им передать или хотя бы помочь им заполучить те или иные дипломы, открывающие дорогу к разнообразным должностям в научном мире и проч.), сколько «математик», желающий сказать свое слово в науке, удивить мир неожиданными открытиями, дать развитие такой-то теории и прочее в том же духе. И здесь я снова возвращаюсь к выводу, не так давно мною сформулированному на этих самых страницах: математика, по природе своей — общая, совместная игра. Конечно, все последние десять лет мне и в голову не приходило, что я когда-либо снова соберусь публиковать свои математические находки. В то же время было более или менее ясно, что никто из моих учеников (и будущих, и настоящих) не доведет до конца того, что я наметил в своих «разведках». И все же я не могу сказать, что занимался математикой в те годы для собственного удовольствия, в силу каких-либо причин сугубо личного толка. Мне кажется, где-то в глубине души я всегда чувствовал, что математикой занимаются для того, чтобы передать знания другим: как будто некая башня на твоих глазах строится сообща, и ты приносишь свой камень. Эта «башня» и есть математика, а вернее — наше знание о математическом мироустройстве. Когда я говорю «наше», я думаю прежде всего о математиках, которых я знал и с которыми меня связывали общие интересы. И в то же время образ математической «башни» вбирает в себя нечто несравненно большее, чем все достижения математиков, которых я когда-либо видел и знал: так отдельные камни легко теряются в общей громаде, и часть сливается с целым. Итак, слово «наше» уже приобретает всеобщий, космический смысл: теперь оно относится ко всему роду человеческому, к моим собратьям из всех стран и эпох, которых мир математики однажды поманил своей красотой. Написав последние строки, я впервые подумал об этом. До сих пор я всегда смотрел на свою работу, как на часть некого «целого» — и, однако же, не отдавал себе в этом отчета. И уж во всяком случае я никогда не задумывался о том, как это предчувствие «целого» в том, что я делал, отразилось на моей жизни как математика и преподавателя.

87